
 

PHYS 102 Midterm Exam 2 Solution 2020-21-2 

1. As shown in the figure, the magnetic field changes sign in a region 

of space, so it can be expressed as: 

�⃗⃗� (𝑥, 𝑦) = {
𝐵0 �̂�,      𝑥 < 0

−𝐵0 �̂�, 𝑥 ≥ 0
 .   

A particle of mass 𝑚 and charge 𝑄 > 0 is at the origin at 𝑡 = 0, and 

has velocity  

�⃗⃗� (𝑡 = 0) =
𝑣0

√2
(�̂� + �̂�). 

(a) (7 Pts.) How long will it take for this particle to cross the y-axis 

(i.e. 𝑥 = 0)? 

(b) (7 Pts.) How long will it take for the velocity of the particle to 

come back to its initial value? 

(c) (7 Pts.) What will be the average velocity of the particle when its velocity is back to its initial velocity? 

(d) (4 Pts.) In which direction (give a unit vector) will the particle move on average if its initial velocity was  

�⃗⃗� (𝑡 = 0) =
𝑣0

√2
(�̂� − �̂�) ? 

Solution: (a) The force on the particle at the instant it enters the magnetic field is 

�⃗⃗� = 𝑄�⃗⃗� × �⃗⃗� =
𝑄𝑣0𝐵0

√2
(�̂� + �̂�) × (−�̂�) =

𝑄𝑣0𝐵0

√2
(−�̂� + �̂�) . 

Since |�⃗⃗� | = 𝑣0 is constant during the motion, the path of the particle is a circle with radius 𝑅 = (𝑚𝑣0) (𝑄𝐵0)⁄ . 

Because the particle enters the field at an angle 𝜋 4⁄ , it will move along a quarter circle and cross the y-axis in time 

𝑇 4⁄ , where T is the period for the full circle. Therefore, time 𝑡1 it takes for this particle to cross the y-axis is 

𝑡1 =
1

4

2𝜋𝑅

𝑣0
=

𝜋𝑚

2𝑄𝐵0
 . 

(b) The particle will enter the region 𝑥 < 0 with velocity �⃗⃗� (𝑡1) =

𝑣0(−�̂� + �̂�) √2⁄ . Therefore, at that instant time magnetic force on the particle 

will be 

�⃗⃗� =
𝑄𝑣0𝐵0

√2
(−�̂� + �̂�) × �̂� =

𝑄𝑣0𝐵0

√2
(�̂� + �̂�) . 

In this region the path of the particle will again be a quarter circle with the 

same radius. Therefore, the particle will cross the y-axis once more, this time 

into the region 𝑥 > 0, and its velocity will come back to its initial value. 

Hence, the time it takes will be 

𝑡2 = 2𝑡1 =
𝜋𝑚

𝑄𝐵0
 . 

(c) The displacement of the particle during the time interval 𝑡2 will be  

∆�⃗� = 2√2𝑅 �̂� = 2√2
𝑚𝑣0

𝑄𝐵0
 �̂� , 

therefore, its average velocity will be �⃗⃗� av = ∆�⃗� 𝑡2⁄ = 2√2𝑣0 𝜋⁄ . 

(d) In this case the force on the particle at time 𝑡 = 0 will be �⃗⃗� =
𝑄𝑣0𝐵0

√2
(�̂� − �̂�) × (−�̂�) =

𝑄𝑣0𝐵0

√2
(�̂� + �̂�). Its average 

velocity will again be in the +�̂�-direction, but in each region the path will be three quarters of the circle.  
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2. An infinitely long straight wire placed at 𝑦 = −𝑑 carries a current 𝐼 in the +x-direction, and another infinitely long 

straight wire placed at 𝑦 = +𝑑 carries the same current 𝐼 in the +z-direction, as 

shown in the figure.  

(a) (20 Pts.) Using the coordinate system indicated in the figure, find the 

magnetic field on the x-axis as a function of x.  

(b) (5 Pts.) At which point does the magnitude of the magnetic field on the x-axis 

attain its maximum value? 

 

Solution: 

(a) For an infinitely long straight wire, we have 

 

∮�⃗� ∙ 𝑑ℓ⃗ = ∮𝐵(𝑟)𝑑ℓ = 𝐵(𝑟)∮𝑑ℓ = 𝐵(𝑟)(2𝜋𝑟) = 𝜇0𝐼     →      𝐵(𝑟) =
𝜇0𝐼

2𝜋𝑟
 , 

 

where 𝑟 is the perpendicular distance from the wire to the point at which the magnetic feld magnitude is evaluated. 

Every point on the x-axis is at the same perpendicular distance 𝑑 from the current at 𝑦 = −𝑑. Therefore, we have 

 

�⃗� 1 =
𝜇0𝐼

2𝜋𝑑
 �̂� . 

 

The magnetic field produced by the current at 𝑦 = +𝑑 is found from the following figure as 

 

�⃗� 2 = 𝐵2𝑥  �̂� + 𝐵2𝑦 �̂� =
𝜇0𝐼

2𝜋√𝑥2 + 𝑑2
(cos 𝜃  �̂� + sin 𝜃  �̂�) . 

Since  

cos 𝜃 =
𝑑

√𝑥2 + 𝑑2
, sin 𝜃 =

𝑥

√𝑥2 + 𝑑2
 , 

 

�⃗� = �⃗� 1 + �⃗� 2 =
𝜇0𝐼

2𝜋(𝑥2 + 𝑑2)
(𝑑 �̂� + 𝑥 �̂�) +

𝜇0𝐼

2𝜋𝑑
 �̂� . 

(b) The magnitude is 

𝐵 =
𝜇0𝐼

2𝜋
√

1

𝑥2 + 𝑑2
+

1

𝑑2
=

𝜇0𝐼

2𝜋𝑑
√

𝑥2 + 2𝑑2

𝑥2 + 𝑑2
 , 

 

which clearly is maximum at 𝑥 = 0. 
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3. (25 Pts.) The figure shows a doughnut-shaped toroidal solenoid 

with inner radius 𝑟1 and outer radius 𝑟2, tightly wound with 𝑁 turns of 

wire carrying a current 𝐼. Find the magnitude of the magnetic field for 

𝑟 < 𝑟1, 𝑟1 < 𝑟 < 𝑟2, and 𝑟 > 𝑟2.  

 

Solution: (Example 28.10 solved in the textbook) 

The symmetry of the problem tells us that the magnetic field lines 

must be circles concentric with the toroid axis. Therefore we choose 

circular integration paths for use with Ampère’s law, so that the magnetic field (if any) is tangent to each path and its 

magnitude is constant at all points along the path.  

Therefore, along each path 

 

∮�⃗� ∙ 𝑑ℓ⃗ = 𝐵(𝑟)(2𝜋𝑟) = 𝜇0𝐼enc. 

 

The otal current enclosed by path 1 (0 < 𝑟 < 𝑟1) is zero, so 

we find 

 

�⃗⃗� (𝑟) = 0, 0 < 𝑟 < 𝑟1 . 

 

For path 2 (𝑟1 < 𝑟 < 𝑟2), each turn of the winding passes once through the area bolunded by this path, so 𝐼enc = 𝑁𝐼. 

Therefore, 

 

𝐵(𝑟) =
𝜇0𝑁𝐼

2𝜋𝑟
 , 𝑟1 < 𝑟 < 𝑟2 . 

 

For path 3 (𝑟2 < 𝑟 < ∞), each turn of the winding passes twice carrying the current in opposite directions through the 

area bolunded by this path, so 𝐼enc = 0. Therefore, 

 

�⃗⃗� (𝑟) = 0 , 𝑟2 < 𝑟 < ∞ . 

 

  



4. A rectangular loop with width 𝐿 and a slide wire with mass 𝑚 are as shown in figure. A uniform magnetic field �⃗⃗�  is 

directed perpendicular to the plane of the loop into the plane of the figure. The slide wire is given an initial speed of 𝑣0 

and then released. There is no friction between the slide wire and the loop, and the resistance of the loop is negligible 

in comparison to the resistance 𝑅 of the slide wire. 

(a) (7 Pts.) Obtain an expression for F, the magnitude of the force exerted on 

the wire while it is moving at speed 𝑣.  

(b) (10 Pts.) Find the distance d that the wire moves before coming to rest. 

(c) (8 Pts.) Find the total energy dissipated by the resistance during the 

motion. 

 

Solution: 

(a) When the wire has speed 𝑣 the induced emf is ℰ = 𝐵𝐿𝑣 and the induced current is 𝐼ind = ℰ 𝑅⁄ = 𝐵𝐿𝑣 𝑅⁄ . 

According to Lenz’s law, the induced current should be upward in the wire so that the force �⃗⃗� = 𝐼ind�⃗⃗� × �⃗⃗�  is to the 

left, opposing the motion. Magnitude of the force is 

 

𝐹 = 𝐼ind𝐿𝐵    →     𝐹 =
𝐵2𝐿2𝑣

𝑅
 . 

 

(b) Taking the positive direction to the right, and using Newton’s second law, we have 

 

𝑎 =
𝑑𝑣

𝑑𝑡
= −

𝐹

𝑚
    →     

𝑑𝑣

𝑑𝑡
= −

𝐵2𝐿2𝑣

𝑚 𝑅
 . 

 

Integrating the last equation, speed of wire is found as 

 

𝑑𝑣

𝑑𝑡
= −

𝐵2𝐿2𝑣

𝑚 𝑅
    →     ∫

𝑑𝑣′

𝑣′

𝑣

𝑣0

= −
𝐵2𝐿2

𝑚 𝑅
∫ 𝑑𝑡′

𝑡

0

    →     𝑣 = 𝑣0𝑒
−(

𝐵2𝐿2

𝑚 𝑅
)𝑡

 . 

 

Wire comes to rest when 𝑡 → ∞. Therefore, the distance d that the wire moves before coming to rest is found as 

 

𝑣 =
𝑑𝑥

𝑑𝑡
= 𝑣0𝑒

−(
𝐵2𝐿2

𝑚 𝑅
)𝑡

    →     𝑑 = 𝑣0 ∫ 𝑒
−(

𝐵2𝐿2

𝑚 𝑅
)𝑡

∞

0

𝑑𝑡    →     𝑑 =
𝑚𝑅𝑣0

𝐵2𝐿2
 . 

 

(c) The wire stops when all its initial kinetic energy is dissipated by the resistance in the circuit.  Hence ∆𝐸 = 𝑚𝑣0
2 2⁄  . 

This can also be found using the power dissipated in the resistor as follows: 

 

𝑃 = 𝑅𝐼ind
2 =

𝐵2𝐿2𝑣2

𝑅
=

𝐵2𝐿2𝑣0
2

𝑅
𝑒

−2(
𝐵2𝐿2

𝑚 𝑅
)𝑡

    →     ∆𝐸 = ∫ 𝑃 𝑑𝑡
∞

0

=
𝐵2𝐿2𝑣0

2

𝑅
∫ 𝑒

−2(
𝐵2𝐿2

𝑚 𝑅
)𝑡

𝑑𝑡 =
1

2
𝑚𝑣0

2
∞

0

 . 


